

 1

Infusing Software Assurance Research Techniques
into Use

Thomas Pressburger

NASA Ames Research Center
Moffett Field, CA 94303

650-604-4878
Tom.Pressburger@nasa.gov

Ben Di Vito
NASA Langley Research Center

Hampton, VA 23681
757-864-4833

B.DiVito@nasa.gov

Martin S. Feather
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Dr
Pasadena, CA 91109

818-354-1194
Martin.S.Feather@jpl.jnasa.gov

Michael Hinchey
NASA Goddard Space Flight Center

Greenbelt, MD 20771
301-286-9057

Michael.G.Hinchey@nasa.gov

Lawrence Markosian
QSS Group, Inc.

NASA Ames Research Center
Moffett Field, CA 94035

650-604-6207
lzmarkosian@email.arc.nasa.gov

Luis C. Trevino
2L Research Corp.

Huntsville, AL
256-509-0196

Trevino@hiwaay.net

Abstract—Research in the software engineering community
continues to lead to new development techniques that en-
compass processes, methods and tools. However, a number
of obstacles impede their infusion into software develop-
ment practices. These are the recurring obstacles common to
many forms of research. Practitioners cannot readily iden-
tify the emerging techniques that may benefit them, and
cannot afford to risk time and effort evaluating and trying
one out while there remains uncertainty about whether it
will work for them. Researchers cannot readily identify the
practitioners whose problems would be amenable to their
techniques, and, lacking feedback from practical applica-
tions, are hard-pressed to gauge the where and in what ways
to evolve their techniques to make them more likely to be
successful. This paper describes an ongoing effort con-
ducted by a software engineering research infusion team
established by NASA’s Software Engineering Initiative to
overcome these obstacles.1,2,3

TABLE OF CONTENTS

1. INTRODUCTION..1
2. INFORMATION GATHERING...................................2
3. INFORMATION DISSEMINATION............................4
4. BROKERING COLLABORATIONS............................5
5. COLLABORATIONS 2004 - 2005.............................6
6. EXTRACTING LESSONS LEARNED.........................6
7. DISCUSSION AND CONCLUSIONS7
ACKNOWLEDGEMENTS ...7
REFERENCES ...8
BIOGRAPHY ...9

1 0-7803-9546-8/06/$20.00© 2006 IEEE
2 IEEE Aerospace Conference paper #1506, V6, Dec 28, 2005
3 Luis Trevino contributed to this work while at NASA Marshall Space
Flight Center

1. INTRODUCTION

Technology infusion – the maturation and transfer of re-
search results into practical use – has long been a desirable
yet challenging goal [1]. NASA, like many organizations,
can benefit from successful technology infusion. However,
technology infusion is often difficult. [2] outlines some of
the obstacles to technology infusion within NASA’s setting,
and proposes some remedies, using microelectronics tech-
nologies as examples.

Software engineering is a technology area that is subject to
these infusion obstacles. [3] observed this a decade ago
(also in a NASA setting). Recognition of the growing
prominence of software within the development and opera-
tion of NASA spacecraft has led to the establishment of the
NASA Software Working Group, the purpose of which is:

 “...to develop and oversee the formulation and imple-
mentation of an Agency wide plan to work toward
continuous, sustained software engineering process
and produce improvements in NASA; and to ensure
appropriate visibility of software issues within the
Agency” [4].

One of the strategies of this group is to “Improve NASA’s
software engineering practices through research”.

This paper is authored by recent and current members of the
team responsible for conducting this strategy, a key element
of which is to “Implement and transfer mature software en-
gineering research results and new technologies to opera-
tional use within NASA”. The infusion team’s approach to
this is the focus herein.

 2

Obstacles to software engineering infusion

There are many obstacles to software engineering technol-
ogy infusion, such as the gap between researchers’ and prac-
titioners’ concepts of adequate maturity; inadequacy of the
NASA Technology Readiness Level (TRL) scale for quanti-
fying the size of this gap; the risk-averse nature of most
NASA software developers4; and the differing motivation
structures for researchers and developers. Rarely are there
return-on-investment (ROI) models, competitive analyses or
other evidence to show a research product’s value in spe-
cific development environments. There are many software
engineering research products and it’s difficult for practitio-
ners to identify, evaluate and track those that may be appro-
priate for them. The practitioner community is also some-
what fragmented, with many contractors—who develop the
majority of NASA-funded software—unaware of NASA-
funded software engineering research. Finally, software
development for NASA missions takes place in the larger
context of project management of the entire mission,
wherein there is reluctance to commit scarce resources to try
out technologies that haven’t been thoroughly proven, and
even more reluctance to placing them on any critical path.

The net result of these obstacles is a low rate of infusion of
software engineering research results into software devel-
opment practice. Many research efforts culminate in pilot
studies that show promise, but thereafter the technique goes
unused, and the researcher switches attention to another
avenue of research.

Our approach to overcoming these obstacles

The paper is organized into the following sections explain-
ing the approach that our team follows to try to overcome
these obstacles to research infusion.

Section 2, Information Gathering: We identify and assess
software engineering research that is of relevance to
NASA’s software development activities. Included in this is
research performed both within and outside of NASA.

Section 3, Information Dissemination: We identify the
channels to reach the NASA software practitioners who
might benefit from the research techniques. We use these
channels to publicize the research techniques among NASA
and its contractors’ software development teams.

Section 4, Brokering Collaborations: We identify and en-
courage promising collaborations between researchers and
NASA software engineering practitioners. This is helped by
the availability of funds specifically devoted to support such
collaborations. Our infusion team helps recommend the al-
location of this funding to worthy collaborations.

4 This is particularly true of decision-makers in the human space program.
Software development processes at United Space Alliance, for example,
which develops Space Shuttle flight and ground software, have been rated
at SEI level 5 [5], an indicator of the motivation to produce reliable soft-
ware. “Most software professionals are resistant to change” [3]

Section 5, Collaborations 2004-2005: We summarize the
research collaborations conducted to date.

Section 6: Extracting Lessons Learned: Our team tracks the
progress of the funded collaborations, and extracts lessons
learned from the aggregation of these experiences. These
lessons learned help identify challenges to and success fac-
tors for technology transfer in NASA, and help refine our
team’s approach.

2. INFORMATION GATHERING

Our information gathering efforts aim to identify software
engineering research taking place that is relevant to NASA’s
software development activities. Since our effort was char-
tered in 2002, we have considered both research performed
within NASA, research from outside NASA, and commer-
cial products. Our team consists of members of the software
engineering research community from several of the NASA
centers and JPL. Their experience and activity within the
software engineering milieu give the team a broad aware-
ness of ongoing developments in that arena.

To do this across the entire field of software engineering
and the entire range of NASA software development needs
would be a large-scale task. However, the team’s members
spend only part of their time on research infusion; overall,
for each of the last three years, our team members’ efforts
have totaled to approximately 1.5 full-time-equivalents per
year. Thus coverage of the entire field of software engineer-
ing is significantly beyond our scope. Instead, we have nar-
rowed our focus to software engineering research results
that:

(1) Have particular relevance to software assurance.

(2) Can be incorporated into existing software develop-
ment practices with a minimum of disruption.

(3) Are mid- to high-TRL (Technology Readiness Level)
research, demonstrating success on a real project, and
ready for use more or less as-is.

(4) Are NASA-funded or related technologies or have
been suggested by software developers.

We discuss each of these in more detail:

Software assurance focus

We focus on software engineering techniques that have par-
ticular relevance to software assurance, namely “the
planned and systematic set of activities that ensures that
software processes and products conform to requirements,
standards, and procedures. For NASA, this includes the dis-
ciplines of software quality (functions of software quality
engineering, software quality assurance, and software qual-
ity control), software safety, software reliability, software
verification and validation, and software independent verifi-
cation and validation.” [6]

 3

This choice of focus is driven by two factors: availability of
funding to support collaboration studies in this area, and the
nature of NASA’s software challenges. We have been able
to support collaborations with funding provided by NASA’s
Software Assurance Research Program [7]. As its name sug-
gests, it has a focus on assurance-related techniques, and is a
source of promising research results. NASA’s missions im-
pose a particularly stringent need for reliable software, cou-
pled with very limited opportunity to field-test such soft-
ware in advance, as a result of which everyday software
assurance practices are not necessarily sufficient–hence the
impetus within NASA to conduct and infuse research in this
area. Note that software assurance activities (e.g., code in-
spections) can, and often are, performed by the developers
themselves, so we target the entire software development
community, not just software assurance or IV&V personnel.

Evolutionary not revolutionary

We limit our attention to research techniques that can be
incorporated with a minimum of disruption into existing
software development practices. For example, we include
methods that improve the effectiveness of reviews, inspec-
tions, code walkthroughs and the like – these are practices
generally part of current software development practice at
NASA. By way of contrast, we exclude from our considera-
tion research techniques that would require a radical shift in
existing practices (e.g., an approach that requires formal
specification of the entire software system, or a new pro-
gramming language that is incompatible with existing plat-
forms and personnel skills). Our narrow focus is motivated
by the modest level of effort we are able to bring to bear on
research infusion, and should not be construed as a lack of
interest by NASA in other software engineering research.
Indeed, formal methods, which tends to be revolutionary
and requiring a greater cost to introduce, continues to be
studied within NASA5.To the extent that the techniques we
encompass detect problems earlier in the software lifecycle,
they will not only reduce risk, but may also lead to cost sav-
ings. However, techniques whose primary goal is cost or
time savings (e.g., product lines) tend to be more revolu-
tionary than evolutionary, and so tend to fall outside our
scope.

Our team uses the following criteria to assess prospective
techniques. Each technique is ranked qualitatively (High,
Medium, Low, or Unknown) against the each of the criteria:

a) What is the range of applicability to NASA projects?
b) Is this an enabler for software that would otherwise be

infeasible to develop without this research product?
c) What is the expected improvement in productivity over

current techniques?

5 For example, the Robust Software Engineering Group, headed by Mi-
chael Lowry at NASA Ames Research Center [8]; the JPL Laboratory for
Reliable Software, headed by Gerard Holzmann [9]; the Langley Formal
Methods group, headed by Ricky Butler [10], Goddard Space Flight Cen-
ter's Software Engineering Laboratory, headed by Michael Hinchey [11].

d) What is the projected cost of installing and applying the
research product?

e) What is the risk of failure for technical reasons?
f) How easily can the research product(s) be integrated

into a software development project?
g) How much training is required to use the research

product?
h) Does the research product depend on widespread utili-

zation within the project/mission/enterprise to fulfill its
potential?

i) Does the research product have a good user interface
(both for input and output)?

j) Is the research product’s development organization (or
some other organization) able to provide the required
level of support to users of the product?

k) Is the value of the research product clearly apparent to
the users during (or shortly after) its application?

l) Is anything about the research product likely to cause
resistance among users?

Mid- to High-TRL level

We also limit our attention to just mid- to high-TRL (Tech-
nology Readiness Level) [12] research products. We use a
definition of TRL specialized to software engineering, and
look for techniques that are TRL 6 or higher on this scale.
The key maturity requirements are that the research prod-
ucts have been applied to real—usually NASA—problems,
and are ready for use as-is (or nearly so–for example, we
anticipate that the technology providers may well need to
assist the practitioners make use of their products in lieu of
there being a complete set of user manuals, training materi-
als, etc). Again, this focus is dictated by our modest level of
effort (we cannot afford the time to look at everything),
coupled with the nature of the funding to support collabora-
tions (which is in modest amounts, sufficient to fund a col-
laboration study, but not sufficient to support further re-
search). We also consider leading edge COTS tools, for
example, those whose development has been funded in part
by NASA or other government agencies to address software
development issues similar to NASA’s.

The combination of these factors that narrow our focus
make our task feasible within the level of effort available to
us. They also help circumvent some of the concerns that
have been expressed (e.g., [13], [14]) on relying solely on
TRL measures as a means to assess readiness for technology
infusion. For example (from [13]): “...TRLs leave out such
considerations as the degree to which the technology is
critical to the overall success of the systems...”; our assess-
ment’s questions such as “b) Is this an enabler...” and “c)
What is the expected improvement...” address this issue.

 4

NASA-funded or related technologies, or those that have

been suggested by software developers

We were directed by the NASA Software Engineering Ini-
tiative to focus on NASA-funded research and related tech-
nologies. Examples include several static analyzers, one that
is funded by NASA research programs and others that are
commercially available. As our customer base has grown,
we have increased our efforts to solicit technology sugges-
tions from the NASA community.

3. INFORMATION DISSEMINATION

The next step in software research infusion is to disseminate
information about those research techniques to potential
beneficiaries – NASA software practitioners. We employ
both passive and active means to disseminate information.
Passive means are based on web pages that make informa-
tion available to whoever cares to read it. Active means in-
clude following specific pathways that lead to identification
of likely practitioners, personal contacts, and annual NASA-
wide videoconferences.

Passive dissemination of information

Information on the research techniques that we have identi-
fied is posted at the research infusion web site [15]

The research product descriptions are organized into levels
of increasing detail: groupings of techniques by life cycle
activity (for example, requirements specification and analy-
sis), one-page summaries, three page summaries, and point-
ers to more extensive material, typically technical papers
that the researchers have posted on their own websites. The
intent is to help guide the reader to efficiently home in on
the techniques that are likely be a good match. Furthermore,
the 1- and 3-page summaries uniformly address what the
research product is (for example, a tool to detect coding
defects without runtime testing), the product’s features, its
benefits, the successes it’s had (where appropriate, focusing
on NASA applications), the contexts in which it is best ap-
plied, a comparison with alternative products, and a brief
discussion of how a successful collaboration should be
structured from the perspective of the technology provider.

These are publicly accessible web pages, and so may be
located by practitioners within NASA and its contractors by
search, or by following links to these pages from various
other NASA web pages (for example, the NASA Software
Working Group’s pages).

Active dissemination of information

Our team members have contacts with NASA software
practitioners at their respective centers and with contractors
as well. Presumably other NASA software engineering re-
searchers have similar contacts with software practitioners,
and might be expected to pursue these to locate likely

would-be users of their own techniques, and to serendipi-
tously make connections between practitioners and other
research of which they are aware. Our infusion team,
through its involvement in gathering information on suitable
techniques, has at its fingertips deeper and broader knowl-
edge of those techniques, and so is better able to recognize
potential connections. In addition, specific site visits have
been conducted to NASA Centers and contractors.

In addition, we have used the NASA Software Working
Group (SWG) to spread awareness of its research technolo-
gies. The SWG is composed of members from each of the
NASA centers, and is in close contact with Software Engi-
neering Process Groups at the centers. This is the kind of
channel that few of the NASA software engineering re-
searchers (and even fewer of the non-NASA software engi-
neering researchers) are aware of.

Finally, we hold annual NASA-wide video teleconferences
in which we describe the research infusion effort, highlight
a crop of promising techniques, and announce a “call for
collaboration proposals” (more on this item in the next sec-
tion). These are aimed at the NASA software practitioner
community. Announcements of these are spread through our
aforementioned channels, and via various bulletin boards
and e-mail lists. Attendance is voluntary, and must therefore
compete with the many other demands on software practi-
tioners’ time. Thus there is some “self-filtering” by the at-
tendees themselves, to the people who are more likely to be
interested/curious/driven to seek improvements, and hence
representative of “early adopters” of new ideas. We follow
up on their attendance to get their feedback on their level of
interest in the showcased technologies, suggestions for new
technologies, and software development issues of particular
interest. Interested software developers who can’t attend the
video teleconferences can access online videos; DVDs are
also available.

Advantages of our approach

Our efforts serve to increase practitioners’ awareness of
emerging research techniques. The main advantage our ap-
proach has over the status quo derives from our widespread
awareness within the research and practitioner communities,
and active engagement as brokers between these two com-
munities. In the normal course of events software practitio-
ners have little time to spare to peruse the software research
literature, attend research conferences, etc. Similarly, the
software researchers themselves are focused primarily on
performing their research and keeping abreast of develop-
ments at the cutting-edge of research within their fields, and
have little time to spare to extensively search for practitio-
ners who would be potential users of their results. While
researchers often base their studies on practitioner problems,
and may be involved in pilot studies with practitioners, they
are generally limited to their small circle of immediate con-
tacts. Thus we are well-placed to recognize fruitful connec-
tions that would otherwise go overlooked.

 5

4. BROKERING COLLABORATIONS

On some occasions the connections we identified have been
the springboard for immediate adoption of research tech-
niques by practitioners. More commonly, however, merely
making the connection is insufficient. Barriers remain that
impede the adoption of a research technique. On the soft-
ware practitioner side, the technique is often insufficiently
mature to be a guaranteed match with their needs. In other
words, practitioners should not, and will not, assume suc-
cessful use of the technique as part of their critical devel-
opment path. Furthermore, they are reluctant to devote their
(very limited) time and effort to trying the technique. On the
researcher side, typical research grants will cover the re-
search itself of course, and perhaps a pilot study of its appli-
cation (usually performed by the researchers themselves on
representative data). However, they stop short of funding
further maturation of the technique that would be more in-
dicative of its usability (e.g., case studies where someone
other than the researchers themselves apply the technique)
and that would prepare it for third-party use (e.g., a well-
rounded user interface, training material). To address these
concerns our approach has utilized a pool of funding allo-
cated specifically to support deployment of research tech-
niques on projects. A primary goal is that a successful
funded collaboration will lead to adoption of the technique
by the software development organization.

Practitioner-led funding proposals

The research infusion team conducts an annual call for re-
search collaboration proposals, distributing word of this
through the channels discussed in section 4.

Proposals for such funding must be submitted by a software
practitioner (not the technology provider), and must be for
application of the technique to actual project use (not for
further research).

Unlike other research programs, Research Infusion opti-
mizes the likelihood of a successful collaboration by com-
municating with each proposal team (wherever possible)
prior to the proposal due date to ensure, initially, that there
is a good match of technique and requirements, that the pro-
posed collaboration is well-designed, and finally that the
nominal outcome of the project will be a success by our
standards (see “Success Criteria and Progress Metrics” be-
low).

Funding level

The funding range for each collaboration is $20,000 –
$50,000 over a 6-month period. Funds are intended to be
used for risk-reduction in introducing the technology—for
example, for training, customer support, limited licenses
where required, and collaboration management, data collec-
tion and analysis. Despite the low level of funding in com-
parison to typical NASA project budgets, we have seen an

increase in the number of proposals over the three years in
which Research Infusion has held competitions.

Proposal Selection criteria & process

Research Infusion established the following evaluation cri-
teria for submitted proposals. The proposal template in-
cludes sections crafted to gather information on each of
these criteria:

a) Feasibility: Is the proposed collaboration feasible? Are
the skills of the participants relevant, the funding ade-
quate, the management plan sound?

b) Impact on NASA: What will be the impact on NASA?
Is the technique being applied to an important project?

c) Likelihood that, if successful, the technique will be
adopted as part of the development team’s practice:
What is the likelihood that the technique, if successful
in the proposed collaboration, will be adopted as part of
the development team’s practice?

d) Adequate feedback provided to researchers: Is ade-
quate feedback provided to the researchers during the
collaboration? For example, bugs, metrics data, final
report.

e) Good use of NASA funds: Is the proposed collabora-
tion a good use of NASA funds? The proposal’s budget
section addresses this question directly by stating how
the funds will be used. We also ask that the proposer
indicate what the impact will be on the development
project if the proposal is not implemented.

When a collaboration proposal is received, each member of
the Research Infusion team individually evaluates the pro-
posal on each criterion (1 – 5 points for each criterion) and
provided comments. These evaluations are then reviewed in
a team meeting. In contrast to common proposal evaluation
process, the team develops questions for the proposal teams
and contacts them to obtain informal clarifications or even
proposal revisions. The research infusion team’s purpose in
the extended communication is to enhance the proposed
collaborations’ prospects for success. The final group rank-
ing, recommended funding level, and rationale is provided
to the Software Assurance Research Program, which makes
the final funding decisions.

Collaboration management

Following awards, we oversee the collaborations to ensure
that practitioners and researchers are communicating, plan-
ning, and working toward their goals, keeping in mind the
success criteria, and to report to the Research Infusion team
lead the project status and particularly any issues, as they
arise, that threaten success. Oversight requires facilitation of
communication and feedback to both practitioners and re-
searchers. This includes obtaining the researchers’ perspec-
tive on the collaboration team’s performance. The oversight
team is familiar with other applications of the same or simi-
lar research, and has experience in evaluating software en-
gineering research and its applications. The oversight team
ensures collaboration start-up—transfer of funds, project

 6

planning, training, etc.; evaluates and advises on experiment
design and identifies other NASA sources for assistance for
the collaboration – for example, individuals who have some
experience with the technique; advises on defining collabo-
ration-specific success criteria as well as the overall re-
search Infusion success criteria; helps track success criteria.

Success Criteria and Progress Metrics

Our primary success criterion is that the research products
used in the collaborations are adopted for future software
development by the teams (or organization). However, this
is unrealistic for mid TRL-level research products that may
lack productization, and it may be unrealistic for high TRL
or even for commercial products (for example, the license
fee may be too high for a single team to bear). Thus we have
identified several complementary success criteria:

a. The success criteria of the collaboration projects funded
under this proposal are met. This includes a positive rat-
ing for each product on the collaboration’s evaluation
criteria metric(s).

b. The research product is adopted by the collaborating
software development team for current use.

c. The research product is included in a list of recom-
mended development practices at a NASA Center or by
contractor.

d. The software development team using the product pro-
vides feedback, including performance data, to the re-
search team to guide future development of the product.

e. Six months after the funded collaboration period, the
research product is still being used by the development
project or by a successor development project.

f. Independent of the success of the collaborations, “les-
sons learned” regarding the challenges and success fac-
tors for software development technology infusion
within NASA.

Determination of return on investment for the technology
within the scope of the collaboration is conspicuous by its
absence from our evaluation criteria. This is partly because
of the difficulty of determining ROI, especially given the
extremely limited funding available to each collaboration. In
addition, each software development organization uses its
own procedure for determining whether to adopt a new
technology; in some cases the procedure may involve an
ROI determination, in other cases not. Our charter is to in-
fuse the technology; success criteria such as whether the
technology is adopted (item b) are direct measures of our
success in achieving this goal, while ROI may be one factor
in an organization’s decision to adopt.

5. COLLABORATIONS 2004 - 2005

Our effort was chartered in 2002. We held NASA-wide vid-
eoconferences in August of 2003, May of 2004 and March
2005. At each of these we featured seven or more promising
assurance techniques (in the second and third events, repeat-
ing some of the ones from previous years as well as new
ones), and announced a “call for collaboration proposals”.
Following the selection process described earlier, this lead
to funding for a selection of Research Infusion collabora-
tions.

Ten such collaborations were initiated during 2004 – 2005.
The technologies included a technique for conducting more
efficient formal inspections; software defect classification
for process improvement; requirements analyzers; code ana-
lyzers; and tools and a method for design rationale capture.
The target application projects included spacecraft flight
software, a ground antenna controller, International Space
Station payloads, Space Shuttle and Space Shuttle Main
Engine software, and a mission design activity. An addi-
tional four collaborations have been approved for 2006.

To date, six collaborations have completed, all of them
achieving a “penetration factor” of 9 (as measured on the
NASA Software Assurance Research Program’s scale of 1 –
9)—the results of applying the technology were actually
used on the project. In the historical context, this level of
penetration of new software engineering technologies is
rare. One collaboration resulted in success criteria (e) –
technology is still in use 6 months after the end of the col-
laboration – and (c) – the technology is in the center’s list of
recommended development practices; two other collabora-
tions are planning to adopt (and so would lead to (e)); and
yet two more are investigating adoption in their context.

6. EXTRACTING LESSONS LEARNED

Lessons learned address questions such as: What additional
guidance can collaborators be given to improve their suc-
cess rate in the future? Why is technology transition difficult
within NASA? What are the success factors for a research
product to be adopted? What communication channels be-
tween researchers and practitioners within NASA can im-
prove adoption?

In the remainder of this section we report some lessons
learned based on the initial sets of Research Infusion col-
laborations.

Some developers are not proficient at research-oriented ac-
tivities and need guidance and oversight. These teams are
likely to benefit from more detailed pro forma documenta-
tion or templates (kick-off meeting agenda, project plan,
final report). For specific categories of tools (such as static
analysis tools) we can provide very detailed templates. They
also require frequent oversight (a) to be sure communication
is occurring between developers and researchers, and (b) to

 7

verify that the schedule is being followed. Not all the pro-
jects require this level of support but such support is likely
to benefit Research Infusion by promoting uniform, higher-
quality collaboration practices.

Research Infusion’s technology selection criteria have re-
mained largely unaltered through several years of scrutiny
an application. However, several modifications are recom-
mended for the future.

A greater emphasis should be placed on the criterion “How
easily can the research product(s) be integrated into a soft-
ware development project?” While this is stated as a con-
straint on the technology, it is a relation between the tech-
nology and the development environment, and it requires
more careful evaluation by the collaboration team prior to
proposal submission. For example, several collaborations
have had unexpected difficulty due to incompatibilities in
the compiler (or other development tool) used on the project
and the requirements of the technology. This can be a more
serious issue at NASA than elsewhere because of the very
conservative nature of NASA software development, sup-
porting long-obsolete development platforms, in contrast to
the most current environments that are typically supported
by new software engineering technologies.

Also, the evaluation criteria for collaboration proposals need
to take into account contractual risks (this has not been
made explicit to the collaboration team to date). The ques-
tion can be interpreted in “cost/benefit” terms—will so
much time be spent on handling contractual issues that the
collaboration is put at risk. Again, this is a particularly sig-
nificant issue for NASA projects where there can be a high
administrative overhead (including long delays as well as
personnel effort) in getting necessary approvals. These ob-
stacles have the potential for derailing projects with low
funding and short duration.

Another risk that should be recognized and mitigated results
from the classification of the collaboration’s target software.
Software that is classified as export-controlled may limit
collaboration participation by technology developers. Un-
fortunately, the most safety- and mission-critical code is
often classified as ITAR at NASA.

There are various answers to the question “What is the next
step” – from research infusion to technology transfer. A
general solution is unlikely. Some technologies are readily
integrated and generalized into a parent organization’s exist-
ing processes – they are modifications to existing processes.
Various other technology-specific approaches may be ap-
propriate within the NASA context.

Tighter qualification of technology / project combination
may be needed. One of the static analysis tools used had
previously been successfully applied to NASA software, but
that software had specific technical features. The tool did
not transition well to software that did not have these fea-
tures. Also, the appropriate lifecycle context and purpose for

the tool (in this case) may not have been clear to the devel-
opment teams.

Collaborations’ project plans should explicitly include an
iterative approach to technology application, scaling up with
each iteration.

To succeed, training and continued support are needed. For
example, one of the static analysis tools lacked training, and
minimal support was provided. The technology vendor did
not visit the development team to train and consult on the
tool’s application. In contrast, another development team
received onsite training on applying the technology it se-
lected to its own application. This reduced risk and cost as
well, since part of the target application was used in the
training session. “The most successful way to do tech trans-
fer is to put a member of the [technology vendor team] on
the development team” – Matt Barry, JPL, (paraphrased)
communication to the authors.

Overall, Research Infusion’s first set of completed collabo-
rations supports the hypothesis that with selection of appro-
priate technologies, careful matching of technology with
software development team, and guidance and oversight,
infusion of new software engineering technologies can be
performed successfully on a minimal budget.

7. DISCUSSION AND CONCLUSIONS

Research Infusion has demonstrated an inexpensive and
effective process for brokering matches between software
engineering researchers and practitioners that can be incor-
porated into NASA’s overall strategies for infusion of soft-
ware engineering research products, and specifically for
research products that can improve software safety and mis-
sion assurance.

As our procedures are codified and the research infusion
team has gained experience, our approach is likely to scale
to a greater range of software engineering technologies (not
just those addressing software assurance) and to larger
numbers of collaborations. Expansion of scope to more
“revolutionary” technologies—technologies requiring a
more significant change to an existing software develop-
ment process model, or to the required infrastructure—is
likely to require adaptations in the Research Infusion busi-
ness model.

ACKNOWLEDGEMENTS

The research described in this paper was carried out at
NASA Ames Research Center, Langley Research Center,
Marshall Space Flight Center, and Goddard Space Flight
Center, and at the Jet Propulsion Laboratory, California In-
stitute of Technology, under a contract with the National
Aeronautics and Space Administration. We thank Burton
Sigal for his feedback on earlier drafts.

 8

We wish to acknowledge the contributions of the following
individuals and institutions. John Kelly, in the NASA Office
of the Chief Engineer, leads the NASA intercenter Software
Working Group and has provided support for the research
infusion effort as part of the NASA Software Engineering
Initiative. This Initiative was the basis for a software engi-
neering research infusion effort. Pat Schuler of NASA
Langley suggested our basic approach. Martha Wetherholt,
in the NASA Office of Mission Assurance, is head of the
NASA Software Assurance Research Program, which is
administered by Kenneth McGill at the NASA IV&V Facil-
ity. Both have helped our infusion effort by providing col-
laboration funding, direction, and advice. Tim Menzies,
formerly of West Virginia University and the IV&V Facil-
ity, now at Portland State University, was an early member
of the team and helped give us our start. Wes Deadrick of
the IV&V facility has also advised us and has been a re-
viewer of collaboration proposals. The Research Infusion
team also wishes to acknowledge the many researchers who
have lent their support and the software developers who
have submitted collaboration proposals.

REFERENCES

[1] E. Rogers, Diffusion of Innovation, The Free Press,
New York, 1983.

[2] A.A. Shapiro. “Technology Infusion for Space-Flight
Program,” 2004 IEEE Aerospace Conference Proc.,
Volume 1 Pages 662-667, March 6-13, 2004.

[3] M.V. Zelkowitz. “Software engineering technology
infusion within NASA”, IEEE Transactions on Engin-
eering Management, 43(3) , pp. 250-261, August 1996.

[4] NASA Software Working Group web site
http://software.nasa.gov/about/index.cfm

[5] Orr, James. “Space Shuttle Software Development and
Certification”, presentation at NASA Ames Research
Center by United Space Alliance, October 2000.

[6] NASA headquarters web site
http://www.hq.nasa.gov/office/codeq/software/

[7] NASA Independent Verification and Validation Facil-
ity’s Office of Safety and Mission Assurance Software
Engineering Research Program web site
http://www.ivv.nasa.gov/forresearchers/osmasarp/osma
sarp.php

[8] NASA Ames Research Center’s Robust Software En-
gineering Group web site
http://ti.arc.nasa.gov/ase/index.html

[9] Jet Propulsion Laboratories’ Laboratory for Reliable
Software web site http://eis.jpl.nasa.gov/lars/

[10] NASA Langley Research Center’s Formal Methods
Group web page http://shemesh.larc.nasa.gov/fm/

[11] NASA Goddard Space Flight Center’s Software Engi-
neering Laboratory web site http://sel.gsfc.nasa.gov

[12] J.C. Mankins. “Technology Readiness Levels”, White
Paper, Advanced Concepts Office, Office of Space Ac-
cess and Technology, NASA, April 1995, available
from http://www.hq.nasa.gov/office/codeq/trl/trl.pdf

[13] J.D. Smith II. “An Alternative to Technology Readiness
Levels for Non-Developmental Item (NDI) Software”,
Proc. 38th Hawaii International Conference on System
Sciences, 2005.

[14] R. Mackey, R. Some & A. Aljabri. “Readiness Levels
for Spacecraft Information Technologies”, 2003 IEEE
Aerospace Conference Proceedings, Volume 1 Pages
391- 398, March 8-15, 2003.

 [15] NASA Software Engineering Research Infusion web
site http://ti.arc.nasa.gov/researchinfusion

 9

BIOGRAPHY

Tom Pressburger is in the
Robust Software Engineer-
ing group led by Dr. Mi-
chael Lowry at NASA Ames.
He serves on the Ames En-
gineering Process group
and is the alternate Ames
representative to the Soft-
ware Working Group. He
led the software engineering
research infusion subgroup
described in this paper.
Lately, he has been working
on projects related to reuse
of software for NASA's Ex-

ploration mission. His expertise is in the area of program
synthesis which was applied to Java model checking, state
estimation, statistical algorithms, solar system geometry,
and, when he was at the Kestrel Institute, algorithm design.
He also worked at Reasoning Systems in the area of soft-
ware reengineering. He holds a B.S. in Mathematics from
CalTech and an M.S. in Computer Science from Stanford.

Ben Di Vito is a senior
research engineer in the
Safety-Critical Avionics
Systems Branch at NASA
Langley Research Center,
where he applies formal
methods to problems in
fault-tolerant computing
and flight-critical avion-
ics. He has extensive ex-
perience with deduction
tools and techniques, es-
pecially the PVS theorem
prover for higher order

logic. A recent research project initiated by Ben concerns
the establishment of a mathematical database service called
Hypatheon. Ben holds a Ph.D. in computer science from the
University of Texas at Austin

Michael Hinchey is Direc-
tor of the NASA Software
Engineering Laboratory,
located at Goddard Space
Flight Center. He has held
academic positions at the
level of Full Professor in the
USA, UK, Ireland, Sweden
and Australia. He is the au-
thor of move than 200 tech-
nical papers, and 15 books.
His current research inter-
ests are in the areas of for-
mal methods, system cor-
rectness, and agent-based

technologies. Dr. Hinchey is a Senior Member of the IEEE,
a Fellow of the IEE and the British Computer Society. He is
currently Chair of the IEEE Technical Committee on Com-
plexity in Computing, and is the IEEE Computer Society’s
voting representative to IFIP TC1 for which he has been
elected Chair for 2006 to 2008. He received the Ph.D. in
Computer Science from University of Cambridge.

Martin S. Feather is
a Principal in the
Software Quality As-
surance group at JPL.
He works on develop-
ing research ideas
and maturing them
into practice, with
particular interests in
the areas of early
phase requirements
engineering and risk
management and of

software validation (analysis, test automation, V&V tech-
niques). He obtained his BA and MA degrees in mathemat-
ics and computer science from Cambridge University, Eng-
land, and his PhD degree in artificial intelligence from the
University of Edinburgh, Scotland. For further details, see
http://eis.jpl.nasa.gov/~mfeather

 10

Lawrence Markosian is a
Computer Scientist with
QSS Group, Inc. at NASA
Ames Research Center,
where he led a team de-
veloping model checking
tools based on Java Path-
Finder. He is a member of
the NASA Software Engi-
neering Initiative’s Re-
search Infusion team.
Prior to joining NASA, he
was a founder of Reason-
ing Systems., where as VP

of Applications Development he managed technology trans-
fer of advanced software engineering tools. Markosian has
an undergraduate degree in mathematics from Brown Uni-
versity and has done graduate work at Stanford University
in logic and artificial intelligence.

Luis Trevino is Chief Scien-
tist and contributing partner
with 2L Research Corpora-
tion, designing and develop-
ing advanced software algo-
rithms for DoD. Prior to
joining 2L Research, he was
involved with cutting edge
NASA programs for over 16
Years. He has worked and
led projects in the Advanced
Sensors & Health Manage-
ment Systems Branch,
Spacecraft & Vehicle Sys-
tems Department of the Engineering Directorate at Mar-
shall Space Flight Center. He received his BSEE from Texas
A&M University and his MS and Ph.D. in Electrical Engi-
neering from the University of Alabama in Huntsville.

